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I. INTRODUCTION

Large space structures have been identified as having a number of

potential applications for national security and future energy needs. Typical

applications include solar power station, large space mirror, large space

antenna, space-based radar, and multipurpose large space platform. Various

missions which require large lightweight structures and the major design

requirements of such structures have been summarized by NASA in Refs. 1 and 2.

Although prioritized specific missions are yet to be defined, several novel

and innovative design concepts have been suggested for future applications

(Refs. 3 through 14). These generic conceptual ideas provide valuable informa-

tion regarding the technology needed for developing structurally efficient low

cost systems. The size, design environment, manufacturing methods, and other

characteristics associated with large space structures dictate that the first

time such a structural system assumes its operational configuration, it will

occur in orbit, thus creating unique design and testing problems. Furthermore,

the cost involved in deploying such itructural assemblies to their full capa-

city requires a high level of confidence in analytical methods and modeling

1"Outlook for Space," NASA Task Group, NASA SP-386, January 1976.

2Hedgepeth, John M., "Survey of Future Requirements for Large Space Struc-
tures," NASA CR-2621, 1975.

3Woods, A. A., Jr., "Offset Wrap Rib Concept and Development (LMSC)," Large
Space Systems Technology, NASA Conference Publication 2118, 1979.

4Archer, J. S., "Advanced Sunflower Antenna Concept Development (TRW)," Large
Space Systems Technology, NASA Conference Publication 2118, 1979.

5Montgomery, D.C. and L.D. Skides, "Development of Maypole (Hoop/Column)
Deployable Reflector Concept for Large Space Systems Applications (Harris
Corp.)," Large Space Systems Technology, NASA Conference Publication 2118,
1979.

&'Modular Reflector Concepts Study (GDC)," Large Space Systems Technology,
NASA Conference Publication 2118, 1979.
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techniques for predicting their structural responses to the natural and induced

environments. Although significant emphasis has been pnac, on

design concepts, construction methodology, and deploymnent techniques for large

space structures, extremely limited efforts have been devoted tQ developing

efficient analytical methods for structural modeling. As currently envisioned,

a strong candidate for a large low-mass and high-stiffness structure is an open

truss configuration. The design, analysis, and testing of such a structure,

with a large number of structural elements, present several challenging prob-

lems. Some such problems are to develop capabilities for conveniently assess-

ing preliminary designs, efficiently carrying out tradeoff studies, confidently

predicting structural responses, suitably designing ground test methodology,

and judiciously recommending space verification test programs.

7"DOD/STS On-Orbit Assembly Concept Design Study (GDC)," SAMSO-TR-78-128,

1978.

8 "DOD/STS On-Orbit Assembly Concept Design Study (MMC)," Martin Marietta

Corporation, Report MCR-78-113, 1978.

9 Agan, W. E., "Erectable/Deployable Concepts for Large Space System Techno-
logy (Vought Corp.)," Large Space System Technology, NASA Conference Publi-
cation 2118, 1979.

10Britton, W. R. and J. D. Johnston, "Space Spider - A Concept for Fabrica-
tion of Large Space Structures," AIAA Conference on Large Space Platforms:
Future Needs and Capabilities, September 1978.

llStokes, J. W. and E. C. Pruett, "Structural Assembly in Space," Large Space

Systems Technology, NASA Conference Publication 2118, 1979.

12Nein, M. E. and F. C. Runge, "Science and Applications Space Platforms,"
AIAA 81-0458, AIAA Second Conference on Large Space Platforms, February 181.

13Johnson, R. R., H. Cohan, and G. G. Jacquemin, "A Concept for High Speed
Assembly for Erectable Space Platforms," A1AA 81-0446, AIAA Second Confer-
ence on Large Space Platforms, February 1981.

14Stoll, H. W., Systematic Design of Deployable Structures," AIAA 81-0444,
AIMA Second Conference on Large Space Platforms, February 1981.
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tions, which is both time-consuming and expensive. The discrete fieid approach

takes advantage of the regularity of the structure. It is an extension of the

classical method used for continuum problems in which equilibrium and compati-

bility equations at each node (or joint) of the structural frame are formulated

first and then the resulting governing equations for the total system are

solved using finite differences and differential calculus.

The state of the art of the discrete field method is summarized in Ref.

15, whereas some example problems illustrating this approach are given in Refs.

16 through 18. Although the discrete field method is useful for moderate-sized

problems with simple geometry, it becomes increasingly complex when applied to

large intricate configurations.

1 5Dean, D. L. and R. R. Avent, "State-of-the-Art of Discrete Field Analysis
of Space Structures," Proceedings of Second International Conference on
Space Structures. Edited by W. J. Supple, University of Surrey, Guildford,
England, September 1975.

16Renton, J. D., "The Related Behavior of Plane Grids, Space Grids, and
Plates," Space Structures, Blackwell, Oxford, England, 1967.

17 Renton, J. D, "General Properties of Space Grids," International Journal of
Mechanical Sciences, Vol. 12, 1970.

18Dean, D. L. and C. P. Ugarte, "Field Solutions for Two-Dimensional Frame-
work," International Journal of Mechanical Sciences, Vol. 10, 1968.
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The third approach is a technique to replace discrete structural frame-

works with equivalent continuum mowels (:iefs. 25). it invo.e 7.

determination of equivalent elastic and dynamic prcoerties of the truss struc-

ture. The response of a given structure is then predicted by solving the con-

tinuum model under similar loading and boundary conditions. The continuum

problem can, in general, be simplified by making certain logical (tnematic

assumptions. For example, a large platform-type truss could be modeled as an

equivalent continuum plate, whereas a long truss boom could be represented by

an equivalent continuum beam. This approach, when applied to large space

structures, has great versatility in efficiently determining the overall

response of the structure to the induced loading as well as in carrying out

the design feasibility and tradeoff studies. Although much work has yet to be

done toward accomplishing "perfection," the present study represents a step

forward in the state of the art of developing modeling methodology for large

truss-type structures based on the equivalent continuum approach.

1 9Mikulas, M. M., Jr., H. G. Bush, and M. F. Card, "Structural Stiffness
Strength and Dynamic Characteristics of Large Tetrahedral Space Truss
Structures," NASA TMX74001, 1977.

2 0Bush, H. G., M. M. Mikulas, Jr., and W. L. Heard, "Some Design Considera-
tions for Large Space Structures," Proceedings of the AIAA/ASME 18th Struc-
tures, Structural Dynamics, and Materials Conference, Vol. A, 1977.

2 1Renton, J. D., "On the Gridwork Analogy for Plates," Journal of Mechanics,
Physics, and Solids, Vol. 13, 1965.

2 2Flower, W. R., and L. C. Schmidt, "Analysis of Space Truss as Equivalent
Plate," Journal of the Structural Division, Vol. 97, ASCE, 1971.

2 3Heki, K., "On the Effective Rigidities of Lattice Plates," Recent

Researches of Structural Mechanics, Tokyo, 1968.

2 4 Sun, C. T., and T. Y. Yang, "A Continuum Approach Toward Dynamics of
Gridworks," Journal of Applied Mechanics, Vol. 91, ASME, 1965. 1

25Nayfeh, A. H. and M. S. Hefzy, "Continuum Modeling of Three-Dimensional

Truss-Like Space Structures.," AIAA Journal, Vol. 16, No. 8, 1979.
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The procedure for deriving the effecci'.'e elas:ic and d.na-ic prcnerties

3f an ecuiv.aIern on ti.".u,.-- -ced 2 s z' . -' e S- t

solution of the equivalent continuum motel is .szzsse in Seez:ii..-.

example problem for verifying accuracy: f the mode I'S i1ustra:ed in 3e::icr.

IV followed by the conclusiQns of this study.
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II. EQUIVALENT CONTINUUM MODEL

A. DETERMINATION OF EQUIVALENT EFFECTIVE PROPERTIES

The procedure for determining the effective properties of an equivalent

continuum model, similar to that of Nayfeh and Hefzy (Ref. 26), was indepen-

dently derived. The approach is straightforward. For a given truss structure,

all sets of parallel members are identified. The direction cosines for each

set of parallel members are determined with respect to the global reference co-

ordinate system. Unidirectional stiffness properties of each set are derived

next by "smearing" the stiffness of individual members in the set over the

effective area. Finally, through orthogonal transformations, contributions of

each set to the effective continuum properties are derived.

For a linear elastic body, the stress-strain relations are given by

aij C ijkl 4kE - i,j,k,1 1,2,3 (1)

where Oij and e ki are the components of stress and strain tensor, respec-

tively, and C ijkl are the elastic constants. Equation (1), in matrix form,

is written as

011' Clll C1 12 2  C1 13 3  C1 12 3  C11 3 1  C11 12  11'

022 C2 2 1 1  C 22 2 2  C2 2 3 3  C2 2 2 3  C2 2 3 1  C2 2 12  E£22

033 C3 3 1 1  C 33 2 2  C3 3 3 3  C3 3 2 3  C3 3 3 1  C3 3 12  "33

023 - C2 3 1 1  C2 32 2  C 2 33 3  C2 32 3  C2 3 3 1  C2 3 12  E23 (2)

031 C3 1 1 1  C3 12 2  C3 13 3  C3 12 3  C3 1 3 1  C3 1 12  £31

0'12 C12 1 1  C12 2 2  C12 3 3  C12 2 3  C12 12  C1 2 12  E12

2 6Nayfeh, A. H., and M. S. Hefzy, "Continuum Modeling of the Mechanical and

Thermal Behavior of Discrete Large Structures," AIAA 80-0679, AIAA/ASME/ASCE/
AHS 21st Structures, Structural Dynamics, Materials Conference, May 12-14,
1980.
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An expression for determining C iki for an equivalent continuum in

terms of the geometric and material properties of the orizinal s:rcture Thall
th

now be derived. If (--ij )m are the direction cosines of the m parallel

member set and (C' ) are the smeared stiffness properties of that set, thepqrs m

global contributions (C ijkf) m of this set to the effective equivalent continuum

properties are given by

(Cijkl)m ( Bip 0jq 8kr is)m(Cpqrs ) (3)

where

aOx!

or alternatively

C = [cos(x' , x.)] (5)( mij m

where x. and xf are the global and local coordinates, respectively.
3 1

Equation (3) can be further simplified. Because, in truss structures,

the members have only one unidirectional elastic property C'll (the modulus of

elasticity along the principal direction of the truss member) Eq. (3) can be

rewritten as

(C ijk)m =(il '6jlk 4 1)m(Cilll)m (6)

B. DETERMINATION OF (C' )
11110m

The effective unidirectional elastic property of a set of parallel

rods, Fig. 1, spaced a apart is given bym

E A
(C' (7)llll)m a h

m

16



!

and the effective mass density is given by

Pm 
Pm a8h

m

where A is the cross-sectional area, E is the modulus of elasticity, and PMm m th
is the mass density of the members of the m parallel member set. The

linear dimension h is a reference measurement introduced for the purpose of

obtaining area average.

2

I.

amam am

Am

Em

1

Fig. 1. A Set of Parallel Rods

17I



The equivalent continuum elastic properties C ijfare now obtained by

summning the contributions of all n parallel ebe t

ijk (Cikm 9
ijk jkfi

and the effective mass density is

n

E 1 (10)

C. APPLICATIONS

1. Two-Dimensional Framework

The procedure for obtaining equivalent continuum properties is illus-

trated through example problems. A two-dimensional framework is shown in

Fig. 2. One can easily identify four sets of parallel members. The direction

cosines for these four sets, with respect to xi, x 2 axes, are

( j62~ 11) '6103 l/ /2

( '60 .1)- l/ilY

(-812)2 1 j6 2)4 1/S/ (11

18



X2 Ep2  AE 1

2. T2 P

A4, E4, P4

Fig. 2. Two-Dimensional Framework
(00, 900, +450 Arrangement)
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If Am, Em, and pm (m = I through 4) are the cross-sectional area,

modulus of elasticity, and mass density, respectivelv, of the m.embers in :iese

four sets, the effective mass and elastic properties of each set are

plA( E1A1

1h (III I ih

=2A2E 2 A2  4
P! p2A 2 (CE1 1 1 ) 2  2

,; L2 p3A3 , T E- 3A3P i 2 ph 1113 2 ih

)L2 P4A4  (C, ) - E4 A4

4 2 1h 111)4 2 1h (12)

and all other (C! vanish.
Ijkft'M

20



From Eqs. (6) and (II)

EIA
(CI I I - [h
(C11 11 1 fh

(C11 22 )1 = (C 1) = (C 2222) = (C2 ) = 2C211 ) = 0

(Cli112 1(C1122)2 11(C112 )2 (C2212 )2 (C1212 2  0

E2A

(C E 2 2
2222)2 -

C- E3 3  C EA3 3
(C11 11)3  8 ; (C1 12 2 )3 = 8 h

,/ 33 EA 3"
(C 1 1 2 )-- E3A 3 (CT 3 A3

1123 8 lh (c2 22 2 )3  8 1h

(C L2 qE 3A3  (C L E 3 EA3
2212)3 8 1h 1212)3 8 lh

L2 E 4A4 v E 4A4

(C 1112 4 = 8 h (C 1 2 2 ) 4  8 lh

(C ) 4_4 - E'4A4

(C11124 8 (c 2 2 2 2 )4  8 Eb

(C22) E 4 A4  E4A4

22 12 4  8 lh c12 12 )4  - 8 lb (13)

21



When Eqs. (13) are substituted into Eqs. (9), the equivalent elastic

continuum properties obtained are

C - E A1 + -  (E3A3 + E A )I

8ih (E3A3 - E4A4)

C V2- (EA - EA)
1112 81h 3 3 4 4

1 E IE A +4 IA12222 = "h 2A2 8 (E 3 A3 *4A4)J

C 12L (E3A3 - E4 A4 ) (14)C2212 ffib 3--h 3 4 .4

and the effective mass density is

-- iP1Al + P2A 2 v (P3A P4A4  (15)

This example problem demonstrates the simplicity with which the equiva-

lent continuum'effective properties can be derived. The method shall now be

applied to a three-dimensional truss.

22



. A ree-Dimensional Problem - TetraMedra! -rass

A sample tetrahedral :russ is sho n .ss.

parallel layers of equilateral triangular meshes zonnec:ed bv bra:ing ars.

The two triangular parallel layers form 0 arrane.ent the eer

oriertati.-n-. e 7ee a material - -. '" 3

summarized in Table 1.

If h is the height of the truss, A is the length of the members in the

top and bottom 'layers, and d is the length of bracing bars one can write.

2 f2
d h + 3 (16)

A repeating element of this truss is shown in Fig. 4. Six sets of

parallel members are identified by numbers 1 through 6. The direction cosines

for these six sets are given in Table 2.

23



2A 2, E2,, 2  Ad, Ed, Od

-V,, V - - - Dignl

Fig.I 3. TtrhdrlTrs
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IX2  x

3F 2

SX3

I h

IXI

Fig. 4. Repeating Element of Tetrahedral Truss
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ani s
Area E'as~ : 1"" ' .a s ens:. . ..:.: - ?

- as : .

Bott¢om Layer A

Bars A2 2 _ _ 2

9racing A E---
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Table 2. Direction Cosines for Parallel Member Sets

Direction Cosines
Set

Number i31

1 10 0

21/2 /3 /2 0

3 -1/2 /3 /2 0

4 I2d I/ 1 6d h/d

5 -1/2d v3 I/6d h/d

6 0 3 / 13d h/d
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Following the example problem discussed earlier, the unidirectional

effective properties for the members in the top and bottom layers of the

tetrahedral truss can be determined easilv. The arranement of te -.amber7s in

the present case is u , 00 . Table 3 lists ..e efrective unIrectonaI

properties of the three sets of the members in the top and bottom layers of

the truss.

Table 3. Unidirectional Properties of the Members
in the Top and Bottom Layers

Effective Unidirectional Properties

Parallel Member

Set Number Top Layer Bottom Layer

Elastic Mass Elastic Mass

Ii

1, 2, ar 3 2 1 2 EA 2pA1  2 2 2 v3 P2A2

3 1h 3 1h 3 1h 3 ih

The effective unidirectional properties for the bracing members areI determined next. A projection of the tetrahedral truss on a plane perpen-
dicular to the parallel member Set 4 (see Fig. 4) is shown in Fig. 5. In this

figure, bold dots represent the members of Set 4, whereas the effective area

occupied by each member is shaded. Unidirectional effective elastic and mass

properties for the Set 4 members are now computed by smearing the stiffness of

each member over the effective area. Thus

effective stiffness 2 E A
3 2 ddhi

effective mass = 3 d P Ad (17)
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Equations (6), (9), and (10) are now used for deriving the elastic and

mass properties of an equivalent continuum !ode!. For the pu:ose if iiluS-

tration, expcession for the elastic constant C is derived in detail.

From Eq. (6), using Tables 2 and 3 and Eq. (17)

4 ) 2 '/3 ElA 2 v/- E2A2
(CL ) = (3)I (C' ) = +--h-" 3 h"

~I

1111 2 112 (C11112 24 ih 24 Lh

F3 E 1A 1 E2A2( tl4 + EA EA
(Cc I I)3 = ( 3 Ci 1 I 3 - 24 h 24 fh

(611F4 EdAd f3
(C1111)4 = ( C l(C11 1 )4 24 h 3

4 - -
5 dEdAd 13(C ( 4 (C; =  2

Cllll) 5 = (l1)5 1 1 1 ) 5  24 Ih 3
d

I,(Cl 1i16 = '11 6 (C 11 11)6 =0

Equation (9) yields

6
Clill E (Cllll

i ¢1111 =  C11

m= I

or

3v'3- / I
C 3- lE A + EA + 1 LEA)C1 1 1 1  41h \1 1 222 9 d 3dd
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Similarly, other C ijkf's can be derived:

cI2 - 4[(EIAI E2A2 + 9 EdAd)
C1122 4f 1+E2 A2 +9 dAd

dd

1133 - 3 d 3  -dd

1123 =6 d3 d d

C1131 0 C 1112  = 0

2222 4- (EA E 2A 2  9 3 d d )

d
v -h

C -./3 h~ E A
2233 3 d3 dd

d
C2223 6 d 3 d

C 2231 =0 C 2212 =0

C 2 VT h3 EAC33 3 3  1 ~ 2 d3 d d

C33 2 3 - 0 C33 3 1 = 0 C3 3 1 2 - 0

2323 3 d 3  d d

C -2331 0 C 23 1 2  0

3131 3 EdAd

3112 =6 d 3d1 d

(EIA 1 +E 2A2 + 3 EA (18)
1212 41--12 + 9 d 3 d d )
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and the equivalent mass density is given by

F,

p2 .3d)'
P0  

=  fh (PlAI + P2 A2 + I PdAd (19)

This completes the methodology for obtaining the equivalent elastic and mass

properties for the continuum in terms of the geometric and material properties

of a given tetrahedral truss.

In order to solve the continuum problem for predicting the structural

response of the original truss, the governing field equations are (Ref. 27):

Equations of Motion

a2
+ F. (20)

ax. 1 P 2
3 at

Constitutive Equations

I.
aij - ijki 'ki i,j,k,f = 1,2,3 (21)

2 7Fung, Y.C., Foundations of Solid Mechanics, Prentice-Hall, Inc., Englewood
Cliffs, NJ, 1965.
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Strain-Displacement Relations

.. I- _ + I (22)1ij 2 ax. ax.,

where F. are the body forces and u i are the displacement components. The

problem in this form is so wrought with mathematical complexities that a

general solution is almost impossible. However, it is often possible to make

the problem tractable and obtain a reasonable solution through certain

judicious assumptions.
I
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III. SOLUTION OF THE CONTINUUM MODEL

The mathematical difficulties involved in determining solutions for the

equivalent continuum model, derived in Section II, may be circumvented by

making some simplified kinematic assumptions. For example, in the case of a

tetrahedral truss representing a hypothetical large space platform, its equi-

valent continuum model can be viewed as a plate (Ref. 28). This is precisely

the approach adopted in the present study.

Since the displacement components vary linearly along the members of

the truss, it is assumed that the displacement components ul, u2, and u3 of

the equivalent continuum plate model vary linearly with the x3 coordinate,

i.e.

0
U1  U U1  + x3

=0
2= u2  + 3 2

o o
u 3 = u 3 + 33 (23)

where, as shown in Fig. 6. 1 0 u 0 and u3 are the mid-surface displacement
"1 u 2  3 0 i

components (at x3  0), 'I and V2 are the rotation components, and f3 3 is

the transverse normal strain. The mid-surface displacements, the rotation

components, and the transverse normal strain are all assumed independent of

the x3 coordinate.

28 SZilard, R., Theory and Analysis of Plates, Prentice-Hall, Inc., Englewood
Cliffs, NJ, 1974.
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As a consequence of this displacement field assumption, the strain

components are

Ou
0

11 Ox 3 OxI

,u 0

£22 x 2 + x 2

0

33 33

£ =3 + -9 O33
23 2 O a x + 2 + 2 3ax0

2 /

0u0 - 0

4E 1 ( + dx3 3 (24)
31 2 ax 1 x3

The stress and moment resultants for the equivalent continuum plate are

defined as follows:

Stress Resultants

N f hI 2 avf dx 1,2

_h/2 'hI/2

20 "-m3 dx 3  (25)
-hi 2
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Moment Resultants

=0 *,h/2 do c x2i'mo o c, dx 3  
( 2 ) ',

h/2

and

h/2
M ' 03 X3 dx3  (27)

-h/2

The equivalent stiffnesses (viz., extensional, coupling, and bending),

for the continuum model are as follows:

Extensional Stiffness

hI/2
A ihk/ 2 f c. dx3  (28)

"-hI 2

Coupling Stiffness

h/I 2
Bijkl f- Cijk x3 dx 3  (29)

/2

Bending Stiffness

_hh 1 2 2

Dijkl f Cijkl x 3 dx (30)

/2
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The relationships between the stress,"-ornent resultants and the mid-

surface strains are

0 0 3

00
N33 A 33417 + 3333 33 + B334 7 P (31)

0 A

0 f33
a a343 43 + Ba343 Ox 4

o 0=al B 0 + B f + D K
clfl417 t7 0$f33 33 0.84, 417 7

0
0 33 (32)

3= B3e + Da3 4 3 ax(

where a, /, and i/ = 1,2, and

0~ ~ I u " 0)

0 (0 au00

0

43 2 Ox, /
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The equations of motion for the equivalent continuum place mode. are

[usin: Eqs. (20)'

aN 1 1  ax1NO
2 0

+ + q - P +
Ox Ox, 0 t2 1 2

aN12 N 22 O u 2  + a2- 2

x 1 ax2 0Oat 2 at

Q20 20
aQl  uQ2  3  a E33

- + T- +q+Ox 1  x2  + = p 2  + l 2a~ x t at

a Ima2 U0 2
0M1 1  MI 2  -Cu 1 I - 2

Ox1  Ox2  QI + I, = l 2 + P2at at

210 2
M12 + M22 - += u 2  +-O 2

Ox1  ax 2  2  l 2 p2 2
at at

20 20
1 M2  u 3  - 0 3 3

x x2  N33 + 3 = 4 2 + P2 - 2(34)
at at

where ql, q2 ' and q3 are the external load components and NI, M2, and "I3
are the external moment components in the xi, x2, and x3 directions,

respectively.
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-n/ 2

and

po x/ 2 dx (5
2 3 3 (35)
2 -h/ 2

An example poblem is discussed in Section IV.
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IV. EX. MP LE PROBLEM

A. EQUIVALENT STIFFNESSES

In order to assess the accuracv of using the equivalent c.nt., l¢ce,

the merhodology was applied to a hypothetical space platform (Fig. 3) composed

of an assembly of tetrahedral trusses. The extensional, coupling, and bending

stiffnesses are determined from Eqs. (28) through (30) following the procedure

given by Heki (Ref. 29):

Extensional Stiffness

13') (E A + E2A + I E3 EA)A1111 4i 1 I 9 d 3 Edd)

A1 - (EIA 1  E2A2 + _ E
1.122 - 4 1 1 2 2 9 d3 Edd)

A1 13 3  3 3 d d
d

A I 1h EdAd
A11 2 3  6 3 d d

A 0 A 0

A1 13 1  1112

A 3 v1.. E A + E A + 1 L
2222 41 11 2A2 9 3 d d)

2 9Heki, K., "On the Effective Rigidities of Lattice Plates," Recent
Researches of Structural Mechanics, Tokyo, 1968.
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A- V3 h-

-233 3 3 d

_ I fh dAd
A2 2 2 3  3 d

d

A 2231 =0 A2212 =Q

233

A 33 3 3 = 2 d 3  d d

3323 3312 3331 0

A2 3 2 3 - 3 d3 d d

A0A =0
A2 3 3 1 = 0 2312

A3 1 31  = 3 d3  d d

d
A3112 6 d 3dd

A EAI + EA+ - EdA (36)
1212 41 1' 22 9 3  dd~d
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Counlin - Stiffness

3 /3 h

3'3 (E A E A)
ll1 8 1 1 1 2 2

V32 -A (EA - E2A)

B = B B uB = 0
1133 1123 1131 1112

B 3Y3h (E A1 - E2 A2 )B2222 8 18

B 2233 B 2223 B 2231 B.2212 0

B 3333 B 3323 B 3331 B 3312 0

B = B==B
B2323 B2331 B 2312

B3131 B 3112 0

B L3 (EIA l - E2A2 (37)
B 12 12  81 1 1 E2 2

Bending Stiffnesses

3V/Yh 2

DII - - (EIA + E A)
1111 16 1 1-l 1 2 2

D 2 - (E A + E A )
112 16 1 1 1 2 2

3V- h 2  EA
2222 16 (E1 A + E2A2

D = --E h2 (E A + EA) (38)
1212 16 1 1 1 2 2
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The density parameters for the equivalent continuum model are obtained

from Eqs. (19) and (35):

P 21v/3 (PlA + P2 A 2 + PA

02 1T 1=  2 d d '
P1  - h (PIA, - 2

-2 2 T (PA I + P2A2  7 d (39)

With the help of Eqs. (31) through (33), and Eqs. (36) through (38), the

equations of motion (34) are rewritten in terms of the displacements and

rotation components as follows:

20 20 20 0SUI  a u I  a u 2  af3
A + A 20 + (A A 2  A

111 .2 1212 2 1122 1212 0x10x2  1133 O 1

2 2 1 021

1 1 +( B~21111 2 1212 2 (B1122 + B1212 axax2Ox1  aX 2

20 2

q = PO + P- (40)'
.0t2 at 2
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20 20 20 0a u I  a u o.  ( u 2  E 3
A 1 1  " 2 A .3 3

(A1 2 12  A io ) +. .2 2 4. a:

122 112 x1 x 2  *1212 x.22 a
2 2 2

+ q 2 2 + 12( B 2 1 + B I 1 2 ) X @ 2 + B 2 2 x 2 + B 2 2 2 22

c at 2
20 2

AA A + A
3 13 1  2 2323 2 1313 x2

0 20
a u 3  u u3 aq 2

20 20

3 E33
+ q Oa T (42)3 0 at 2 t 2

20 
20 

0 
2u

B + B 1 u1  (B + B + D1
lll 2 1212 2 1122 1212 axlax2  111 2

2Oxu1  O 2  Ox1

2x 2 0x21 2a

O2O1 a P2  0
121 D ' - + (D 112+D 121 a-149 A 311+

O2

+ 1 2 1122 2 + 3 (43)

1 t2 +t
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2 0 20 20Ul u I  2  u1
(B12 + B I) + B. + B ---

~112 12-12 (9x (9X, 12 1

(2 + D 2 2 2

+( 1 1 2 2  1D2 1 2 ) ax I ax 2 1 2 1 2, 49 X 2 9

0 2 2( 2 3 23a-'_+ u 2 + 2 1 2  + -2 -2 (44)
233 , a t a~2 4

9 20 20 20 20
__ u81. u2 0 - u13  8E 3 3  (45)

1133 Ox1  A2233 ax 2  3333 33 + 3 p1  at + 2  a (a~t a~t

In the present example problem, the cross-sectional areas of the mem-

bers in the top and the bottom layer:s are assumed to be identical and all the

members lengths are equal, i.e.

A = A2  -A
1 2

Also

E = E E = E
1 2 d

P = = Pd P

The consequence of these assumptions is that PI and all B ijkl'S are zero.
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Also from Eqs. (38)

1111l 2222 D (say)

and

D1122 D1212 D/

The stiffness and mass properties of the equivalent continuum model are sum-

marized in Table 4.

Table 4. Equivalent Continuum Model Properties

Extensional Stiffness

A mA (I2A +-A
1111 2222 4 1 9 d)

A A (-2A +-A
1122 1212 4 7 9 d)

A A =A 2 VYEA
1133 2233 2323 3131 9 1 d

A3 3 33  9 1 d

A nA mA -6 E
1123 2223 3112 i8 d

Bending Stiffness

D11 22 22  4 E

D m D D/3 -3 EMI
1122 1212 12

Mass and Moment of Inertia

P 0  2 V3 T~ (2A + A d)

P~~ Pi (2A + - )
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The equations of motion (40) through (45) now simplify as

20 20 20 0 200u1  u1 _u2 __33 o11 I
AII -+ L--+ 2A (46)
111 2 1212 +x 1212 axIax 2  1133 ax I  1  0 (

20 20 20 0 20
a U 1a u2  a u2  af 33  - u2

1212 x +x 1212 2  A 1 1  a 2 + A1133 ax+ q2 =PO a (47)22 1 O~O2+2 Ox1  Ox2 2 at

1 22

20D 2 /2 (uT 2 0233 + 311 x 1 Ox + 2ax1  !2x2  3

11 1 u2 2 a x - a x11 + 2+'1 -2 2(0
3 O~la 3 3021 2 O 2a I  ax2 o)
2 2 2 0

a___ Ra' +I (49)
D13 +- +l + NI T2 p 23

ax~ 2 Ox2  3ax10ax 2  A3131 (ax a)t
1 2

2 2 a 2 o 2
2D I D !L2 '2

S 2 0 P2  (50)
1a2 x ax / a

2

10 2 0t

IO u O 0 203
A-+u 2 ) + 0 063(51)

1133 O~x~ Ox I9 2 3 33 3 "33 + " 3  ;5 a 2

The accuracy of the equivalent continuum model developed is illustrated

by the following free vibration problem in which comparison of the natural fre-

quencies obtained from the continuum model is made with those obtained directly

from the actual truss structure solution. For the free vibration case

qi 0 i -. 1, 2, 3

and

M. 0
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Differentiating Eqs. (49) and (50) with respect to x and x2 , respectively

and adding the-n =,gether yield

S02uO 2o0)
c a 3131 2- A3 1 3 1  = 2 2 (52)

1x cx2  ax I ax 2  at-

where

Equation (48) can be rewritten as

u u 3  .9 u 30
(A + + A) (53)

a ax 2  A313

or

PO 2 0
8 u 3  2 0

= V 2u3  (54)

3131 at

where operator

2 a2 a2
V = 2 2

ax2 ax2

Substitution of @ from Eq. (53) gives

2 2  T O a_ 2  a 2 u _ 3
DV2 2 P 0 3 ) P = 0 (55)

at 2  A 3131 at2  3t 2

Equation (55) includes the rotary inertia as well as transverse shear deforma-

tion terms.
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If the rotary inertia terms are omitted from Eq. (55), it reduces to

2 0
/2 P 0  a2  20 - u 3  _ (56)

3131 t 2  at

If the transverse shear deformation is neglected, but the rotary inertia terms

are retained, Eq. (55) reduces to

2 0
D2 + 2 2 0 3  0 (57)

at 2  uat

Finally, if both the transverse shear deformation and rotary inertia terms are

omitted, Eq. (55) reduces to the classical plate equation

20

D4u 3  + P4 - 0 (.58)
Oat2

The solution of Eqs. (55), (56), (57), or (58) for appropriate boundary condi-

tions shall yield the natural frequencies for the equivalent continuum model.

The significance of including the rotary inertia and transierse shear

terms has been discussed by Reissner (Ref. 30), and Mindlin (Refs. 31, 32).

3 0Reissner, E., "The Effect of Transverse Shear Deformation on the Bending

of Elastic Plates," Journal of Applied Mechanics, Vol. 12, June 1945.

3 1Mindlin, R. D., "Influence of Rotary Inertia and Shear on Flexural Motions
of Isotropic, Elastic Plates," Journal of Applied Mechanics, Vol. 18, No. 1,
March 1951.

3 2Mindlin, R. D., A. Schacknow, and H. Deresiewicz, "Flexural Vibrations of
Rectangular Plates," Journal of Applied Mechanics, Vol. 23, No. 3, September

1956.
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It is known that both effects serve :o decrease t:he z7putez reuencies

present study, the natural frequencies are computed from Eqs. (55 throzu'

(58) and compared with those obtained from solving the original truss

structure.

As a first example case, simply supported boundary conditions are

assumed. It is possible to obtain the continuum model closed form solution

for such boundary conditions. These boundary conditions may be stated (see

Fig. 7)

0 = 0 , M 0 at x I =0 and x =a
3 11

S0 , M = 0 at x2 = 0 and x b
3 22 2*2

a
ss X1

ss

IS

ssss x

Ss

SS S

x2

Fig. 7. Simply Supported Plate
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f

0
Assuming displacement u3 as

0 M Xl nrx 2 iwt
u = A sin - sin , e (59)

a

where .A is a constant, m and n are integers, and w. is circular frequency. It

is clear that the boundary conditions are automatically satisfied by the

displacement function. The frequency w may now be determined by substituting

u into Eqs. (55) through (58).

Case 1. Rotary inertia and transverse shear terms included. The

characteristic equation in this case, obtained from Eq. (55) is

P 0P 22 4/PInD) 2 2 0 A -D 2 + + 7D 2 4

A3 1 3 1  (60)

Case 2. Transverse shear term included, rotary inertia term omitted.

The natural frequencies in this case, obtained from Eq. (56), are given by

= f 4 D+ 22  =2 2

[ r2D ( 2  nA33 a M_ + 1
A b13131 2 / (61)

Case 3. Rotary inertia term included, transverse shear term omitted.

Ir this case, the natural frequencies, obtained from Eq. (57), are given by

2 D2)

[ O (a b 2)+ 1 (62)
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Case 4. Classical plate solution. The natural frequencies in zhis

case, obtained from Zq. 56), are given by

4 /2 2\2
2 D + (63)

B. NUMERICAL RESULTS

The following geometric and material properties were assumed for the

tetrahedral truss:

Case A

A A = 50 x 10-6 m2

S= 6m

P 2768 kg/m
3

E 71.7 x 10 6 kPa

Case B

As= 50 x I0 6 m2

A d 2.5 x 0 m

A 6m

P - 2768 kg/m
3

6
E = 71.7 x 10 kPa
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The natural frequencies for the tetrahedral truss with 6, 8, 12, and 18

repeating elemen:s in each direction were computed using the N-ASTRAN 7p:_' ter

program. Equations (60) through (63) are used for computing the natural fre-

quencies of the equivalent continuum model. If N is the number of the repeat-

ing tetrahedral truss elements in each direction, plate dimensions a and b are

given by

a = N1 b - /_ N
2

The results are summarized in Tables 5 through 12 and in Figs. 8 through 15.

The finite element solution of the truss is represented by FEM in the tables,

whereas I through IV represent the continuum solutions with varying degrees of

approximations. These are defined as follows:

I = Transverse shear and rotary inertia terms included

II = Transverse shear terms only included

III = Rotary inertia terms only included

IV = Classical plate solution

The undeformed shape of a truss with 12 repeating tetrahedral elements

(orthographic view) is shown in Fig. 16, whereas its projections on the X-Z

plane and the Y-Z plane are shown in Figs. 17 and 18, respectively. The cor-

responding views for the first four mode shapes of the same truss structure

are shown in Figs. 19 through 30.
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Table 5. Comparison of Natural Frequencies - First Mode

CASE A: A = A

N 8 12 18

FEM 13.67 8.86 4.51 2.18

I 13.26 8.28 4.03 1.88

II 13.44 8.37 4.06 1.88

LII 16.94 9.69 4.36 1.95

IV 17.63 9.92 4.41 1.96

6

4 Ad=A

" /IV

-2
4 8 12 16 20

Number of Bays, N

Fig. 8. Comparison of Natural Frequencies - First Mode
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Table 6. Ccmparison of Natural Frequencies - Second Mode

CASE A: A = A

Nd

N 6 8 12 1 to
S 21 ___________

FEM 22.00 15.08 8.20 4.13

I 24.43 16.11 8.38 4.09

II 24.78 16.33 8.48 4.12

111 36.94 21.55 9.84 4.43

IV 40.29 22.67 10.07 4.48

6

4 Ad A

~ 2

044

"U- I0

-2
4 8 12 16 20

Number of Bays, N

Fig. 9. Comparison of Natural Frequencies - Second Mode
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Table 7. Comparison of Natural Frequencies - Third Mode

CASE A: Ad = A

N -i

6 8 12 18

FEM 24.60 17.06 9.36 4.76

1 27.47 18.30 9.68 4.78

1I 27.84 18.58 9.81 4.82

III 43.23 25.36 11.64 5.25

IV 47.85 .26.91 11.96 5.32

6

Ad= A
4

I124I2

-2

-2 I

4 8 12 16 20

Number of Bays, N

Fig. 10. Comparison of Natural Frequencies - Third Mode
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Table 8. Comparison of Natural Frequencies - Fourth Mode

CASE A: A = A

N
6 8 12 18

FEM 31.80 23.64 12.86 6.76

1 35.40 24.16 13.25 6.75

II 35.80 24.51 13.44 6.82

III 61.10 36.41 16.94 7.69

IV 70.51 39.66 17.63 7.84

6

Ad A

4

2 Iv

c.,J

-2
4 8 12 16 20

Number of Bays, N

Fig. 11. Comparison of Natural Frequencies - Fourth Mode
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Table 9. Comparison of Natural Frequencies - First 'lode

CASE B: Ad  0 .05A

N f
6 12 18

FEM 5.31 3.92 2.49 1.51

I 5.43 3.98 2.48 1.47

II 5.44 3.98 2.49 1.47

III 20.29 11.66 5.26 2.36

IV 21.39 11.99 5.33 2.37

6

Ad 0. 05A

4

IV

2 ,/
0

-2
4 8 12 16 20

Number of Bays, N

Fig. 12. Comparison of Natural Frequencies - First Mode
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Table 10. Comparison of Natural Frequencies - Second >:od-e

CASE B: A 0.05A

f 6 8 12 18

FEM 7.91 5.96 3.90 2.46

1 8.37 6.21 4.01 2.51

II 8.37 6.21 4.01 2.51

III 43.78 25.74 11.84 5.35

IV 48.74 27.42 12.19 5.42

6 Ad -0. 05A

4'
_ IV

2

0

-2 L
4 8 12 16 20

Number of Bays, N

Fig. 13. Comparison of Natural Frequencies - Second Mode

60

L . ... . .. ... ... ".= L:A t .- , " ' ' * ... .....- . ,



Table 11. Comparison of Natural Frequencies - Third ,Mode

CASE 5: Ad 0.05A

N

6 8 12 18

FEM 8.92 6.68 4.36 2.75

1 9.14 6.79 4.41 2.78

II 9.14 6.79 4.41 2.78

III 51.07 30.23 13.98 6.33

IV 57.88 32.56 14.47 6.43

6 6Ad O. 05A

4 . IV

0 __

-2
4 8 12 16 20

Number of Bays, N

Fig. 14. Comparison of Natural Frequencies - Third Mode
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Table 12. Comparison of Natural Frequencies - Fourth Mode

CASE B: Ad  "-A

N
2 6 8 12 18

f 2

FEM 10.63 8.04 5.33 3.43

1 11._15 8.30 5.43 3.48

II 11.15 8.30 5.43 3.48

1II 71.60 43.16 20.29 9.26

IV 86.30 47.98 21.33 9.48

6
\ _Ad O. 05A

4 IV

2 -

0

-2 L
4 8 12 16 20

Number of Bays, N

Fig. 15. Comparison of Natural Frequencies - Fourth Mode
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Numerical results, presented for the simply supported tetrahedral truss,

demonstrate the accuracy obtainable from the equivalent continuum model. It is

observed that, in most instances, the error is less than 3 percent. Further-

more, the four solutions, I through IV, demonstrate the significance of includ-

Ing the transverse shear and rotary inertia terms in formulating the equivalent

plate problem. It is observed that Solution I, which includes both the trans-

verse shear and rotary inertia effects, is very good even when the number of

basic repeating truss elements is small. The effect of transverse shear, which i

is quite significant for a truss with a small number of repeating elements,

becomes less pronounced as the number of these elements increases. This is

shown in Figs. 8 through 15. The rotary inertia effect, on the other hand, is

important only for higher frequency responses and for a smaller number of

repeating elements. Yet, its effect is much less pronounced than that of the

transverse shear (see Tables 5 through 12). Furthermore, i: is also observed

that the effect of transverse shear is much more significant for the case in

which Ad = O.05A. Finally, the mode shapes shown in Figs. 16 through 30 exhi-

bit striking similarities to those of a plate with simply supported boundary

conditions.

In the second example case, free-free boundary conditions are assumed.

The natural frequencies for the truss are determined, as in the first case,

using the NASTRAN computer program. Since, for the free-free boundary condi-

tion, the closed form solution is not readily available for the equivalent con-

tinuum plate, the natural frequencies are determined using the NASTRAN computer

program. A procedure given by MacNeal (Ref. 33) is followed for this purpose.

3 3MacNeal, R. H., "A Simple Quadrilateral Shell Element," Computer and
Structures, Vol. 8, 1978.
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It may be noted here that the finite element solution of a free-free

plate accounts for transverse shear only. The natural frequencies computed

for the truss as well as for the equivalent continuum model are given in

Tables 13 and 14.

Table 13. Comparison of Natural Frequencies,
Free-Free Boundary Conditions

CASE A: Ad A

6 12 18

First Mode Truss 8.63 2.56 1.20

Continuum 9.29 2.66 1.23
Model .

Second Mode Truss 12.47 3.72 1.72

f~l Continuum 13.81 3.87 1.76
Model

Third Mode Truss 15.43 4.91 2.34

Continuum
f12 Model 18.56 5.50 2.56

Fourth Mode Truss 18.80 6.11 2.92

Continuum
f22 Model 20.07 6.35 3.02
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Table 14. Comparison of Natural Frequencies,
Free-Free Boundary Conditions

CASE B: Ad = 0.05A

N6 T 12 18

Frequency 
6 1

First Mode Truss 5.31 2.11 1.12

Continuum
fil Model 4.72 1.98 1.09

Second Mode Truss 7.22 3.02 1.64

f~l Continuum 6.61 2.87 1.60
Model

Third Mode Truss 7.62 3.49 2.03

f12 Continuum 774 3.50 2.04
Model

Fourth Mode Truss 8-74 3.88 2.26

Continuum 7.76 3.59 2.15
Model

The associated mode shapes (orthographic view, projections on the X-Z and Y-Z

planes) are shown in Figs. 31 through 42. A good comparison is once again

obtained between the truss model and its equivalent continuum model. The mode

shapes (Figs. 31 through 42) are also similar to those of a free-free plate.
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V. CONCLUSIONS

A methodology is presented for modeling large truss-type structures

based on the concept of equivalent continuum. The procedure for obtaining

equivalent effective elastic -nd dynamic properties in terms of the material

and geometric properties of tne truss is simple and straightforward. A general

three-dimensional equivalent continuum model is reduced, in the present study,

to a two-dimensional plate through simple kinematic assumptions. The platform

and the boundary conditions of the equivalent continuum plate model simulate

those of the original truss structures. The effects of transverse shearing

strain, rotary inertia, bending-extensional and inertia coupling are included

in the continuum model.

Numerical results, presented in this study, are for a tetrahedral truss

with simply supported and free-free boundary conditions. Whereas a closed form

solution was obtained for the equivalent continuum plate with simply supported

boundary conditions, the same was not possible in the case of a plate with

free-free boundary conditions. The solution in the latter case was obtained

using the NASTRAN computer program. The results adequately demonstrate the

accuracy obtainable from the continuum model. In most instances, the error

is less than 3 percent. Furthermore, the four solutions, I through IV, demon-

strate the significance of including the transverse shear and rotary inertia

terms. It is observed that the plate solution I, which includes both trans-

verse shear and rotary inertia effects, is very good, even when the number of

basic repeating truss elements is small.

For the truss with a small number of repeating elements, the effect of

transverse shear is significant. As the number of the repeating elements in-

creases, the transverse shear effect becomes less pronounced as shown in Figs.

8 through 15. The rotary inertia effect, on the other hand, is important only

for higher frequency responses and for a smaller number of repeating elements.

Yet, it is much less pronounced than that of the transverse shear (see Tables 5

through 12). Furthermore, the effect of transverse shear becomes much more
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significant for the case in which Ad = 0.05A as compared to the case in which

A = A. The mode shapes of the truss with simply supported and free-free
d

boundary conditions (see Figs. 16 through 24) exhibit striking similarity with

those of a plate with similar boundary conditions. The main conclusions of the

study are summarized as follows:

1. The technique of replacing a large truss structure with an equivalent

continuum is extremely promising.

2. Good agreement between the discrete and its equivalent continuum model

solutions can be obtained.

3. The classical plate solution may only be suitable for simple geometries

with large numbers of repeating modules. For relatively small numbers

of repeating truss elements, the transverse shear and rotary inertia

effects must be included in the solution of the equivalent continuum

model.
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